
Monotonic Solution Concepts in Coevolution

Sevan G. Ficici
Computer Science Department, Brandeis University

Waltham, Massachusetts USA

sevan@cs.brandeis.edu

ABSTRACT
Assume a coevolutionary algorithm capable of storing and
utilizing all phenotypes discovered during its operation, for
as long as it operates on a problem; that is, assume an al-
gorithm with a monotonically increasing knowledge of the
search space. We ask: If such an algorithm were to peri-
odically report, over the course of its operation, the best
solution found so far, would the quality of the solution re-
ported by the algorithm improve monotonically over time?
To answer this question, we construct a simple preference
relation to reason about the goodness of different individ-
ual and composite phenotypic behaviors. We then show
that whether the solutions reported by the coevolutionary
algorithm improve monotonically with respect to this pref-
erence relation depends upon the solution concept imple-
mented by the algorithm. We show that the solution concept
implemented by the conventional coevolutionary algorithm
does not guarantee monotonic improvement; in contrast, the
game-theoretic solution concept of Nash equilibrium does
guarantee monotonic improvement. Thus, this paper con-
siders 1) whether global and objective metrics of goodness
can be applied to coevolutionary problem domains (possi-
bly with open-ended search spaces), and 2) whether coevo-
lutionary algorithms can, in principle, optimize with respect
to such metrics and find solutions to games of strategy.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelli-
gence—Problem Solving, Control Methods, and Search; I.2.6
[Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Theory

Keywords
Coevolution, monotonic progress, solution concepts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

1. INTRODUCTION
Coevolutionary algorithms are stochastic search methods

that are frequently used to find (or approximate) solutions
to games of strategy. Nevertheless, whether coevolutionary-
algorithm dynamics are actually directional and inclined to
converge onto global solutions (as opposed to performing
mere local adaptation) is a contentious issue [7, 8, 14]. Fur-
ther, some argue that an objective metric of goodness is
an ill-conceived proposition for coevolution; for example, in
[13] frequency-dependent fitness (usually found in coevolu-
tionary algorithms) is equated with the lack of an “absolute
goal.”

In this paper, we investigate how a coevolutionary al-
gorithm may behave if it never discards any information
learned during its operation—all strategies discovered dur-
ing search are retained and utilized. As a general princi-
ple, the expected quality of a solution returned by a search
method should improve as the search method is given more
computational resources in time and/or space. More desir-
able still, if we repeatedly query a search method (at appro-
priate points during its execution) on any single run, then
the quality of the solution returned by the method should
improve monotonically—that is, the quality of the solution
at time t + 1 should be no worse than the quality at time t.

Given a coevolutionary algorithm that does not discard
information during execution, can we expect it to meet the
desideratum of monotonicity? On the one hand, we may ex-
pect that it must, since the algorithm’s knowledge of the do-
main is ever increasing; the accumulation of strategies makes
the evaluation process increasingly comprehensive and pro-
vides growing genetic diversity for the variation operators.
On the other hand, we may remind ourselves that many
of the problems associated with coevolution arise because
evaluation is never fully comprehensive, and therefore can
be misled when the domain contains intransitivities; new in-
formation may drastically shift our perspective. How, then,
can we guarantee that the solution will improve monotoni-
cally with time (in some global, objective sense)?

This paper shows that, when information is not discarded,
a coevolutionary algorithm may or may not behave mono-
tonically, depending upon the solution concept used by the
algorithm. We develop a formal framework to discuss solu-
tion concepts and monotonicity and show that certain solu-
tion concepts (e.g., Nash equilibrium) guarantee monotonic-
ity and others (including that most commonly used in co-
evolution) do not. Clearly, real-world algorithms have finite
capacity and must occasionally discard information; never-
theless, a monotonic improvement in solution quality over

499

time can be approximated by a finite-memory system if the
solution concept permits (see for example [10], which uses
the Nash-equilibrium solution concept).

We proceed as follows. Section 2 reviews foundational
issues regarding solution concepts in general and how solu-
tions are commonly expressed in coevolutionary algorithms.
Section 3 introduces the basic notions of our formal frame-
work. Section 4 defines and discusses a preference relation
between candidate solutions that forms the basis of our rea-
soning about monotonic solution concepts. Section 5 exam-
ines two solution concepts from the perspective of mono-
tonicity: the one conventionally implemented in coevolu-
tionary algorithms and also Nash equilibrium. Sections 6–8
provide further discussion, examine the relevance of our re-
sults to open-ended domains, and offer concluding remarks.
This paper reports work originally presented in [9].

2. FOUNDATIONS

2.1 Solution Concepts
Fundamental to all search problems is the notion of a solu-

tion concept. Whatever properties our problem domain may
possess, and however we embed that domain into a search
space, we require a solution concept to indicate which loca-
tions in the search space—if any—constitute solutions to our
problem. A solution concept thus partitions a search space
into two classes: solutions and non-solutions. Typically, the
two classes are distinguished in a systematic way—by some
number of measurable properties that are present or absent
in class members; in general, however, any arbitrary binary
partition constitutes a valid solution concept. Thus, a search
space can have an exponential number of solution concepts
applied to it. When we apply a particular solution concept
to a search space, we obtain a particular search problem.

While solution concepts are intrinsic to search problems,
they must nevertheless be implemented by search algorithms.
We can choose from any number of algorithms to solve a
given search problem. Some algorithms may be more or
less efficient than others with respect to our search prob-
lem, yet all of the algorithms must implement the same so-
lution concept to be consistent with our search problem;
algorithms that implement different solution concepts solve
different search problems, by definition (even when used on
the same search space). Solution concepts thus form the
nexus of search problems and processes to solve them, and
are therefore of very great importance.

We belabor our point because a coevolutionary algorithm’s
fitness function, which determines an individual’s likelihood
of survival, is often conflated with the solution concept, and
this leads to difficulties. Recognition of this fusion is crucial
to the improvement of coevolutionary algorithm design [9].

2.2 Expression of a Solution
When we apply evolution to a static single-objective prob-

lem, the most fit individual of the final population is con-
sidered the “solution”; if more than one individual in the
final population achieves this maximal fitness, then we are
indifferent as to which is selected (even if these individuals
are genetically or phenotypically distinct). When we apply
evolution to a static multi-objective problem, then the solu-
tion that is delivered is typically the Pareto front, which is a
set of non-dominated feasible members of a trade-off surface
[11]; these individuals are either in the evolving population

or in an archive of some sort. The practice of coevolution
follows, for the most part, the convention that the solution
to a coevolutionary search problem will be a single “best”
individual (or possibly a set of individuals where multiple
populations that coevolve with each other each contribute
their best individual, e.g., [24]). Indeed, the efficacy of some
coevolutionary algorithms and the correctness of some anal-
yses are predicated on the existence of a single, globally
perfect individual behavior (e.g., [26, 27]).

In [23] experiments on robotic pursuit-and-evasion lead
to the observation that the notion of a single global win-
ner may be inadequate. Other research explicitly embraces
the belief that a solution may need to be expressed as a
collection of evolved agents (all from the same population),
where no single agent in the collection can be considered a
proper solution on its own. (In the case of multi-population
coevolution, each population may need to contribute such
a collection.) For example, in [4] a collection of strategies
for the Iterated Prisoner’s Dilemma (IPD) is evolved with
a speciating evolutionary algorithm. A novel gating mecha-
nism is used (once evolution is complete) to determine which
strategy in the collection likely offers the most effective re-
sponse against a particular opponent at every point during
a 100-iteration game; this procedure is shown to improve
robustness. We note that the “output” of this framework
is not entirely evolved: the gating mechanism is hand-built.
Nevertheless, the solution obtained is clearly not in the form
of a single best individual.

Finally, evolutionary game theory [22] regards the state of
the entire population as a solution (provided the population-
state is a stable fixed-point of the replicator dynamics). For
example, in the Hawk-Dove game, the Nash equilibrium so-
lution is obtained when the population reaches a particular
ratio of Hawks and Doves; this is known as a polymorphism.
Thus, the solution here is not a single individual (e.g., a
Hawk), nor is it a collection of unique individuals (e.g., a
Hawk and a Dove); rather, the solution is a specific distri-
bution over the two strategy types.

In this paper, we use a construct called a behavior complex
to represent various types of strategy collections (including
singletons). The space of complexes forms our search space.

3. FORMALISM

3.1 Symmetric Domains
For brevity and ease of exposition, we limit our analyses to

symmetric games for two players. Familiar examples of two-
player domains include zero-sum board games such as Tic-
Tac-Toe or Backgammon. These domains are asymmetric
because they distinguish the roles of the two players: one
player moves first. As a result, each player has available
to it a unique set of behaviors, or strategies, for use in the
game. Examples of symmetric domains are games such as
Rock-Paper-Scissors, various “numbers games” [31], and the
IPD. In these games, the player roles are not distinguished;
both players share the same set of possible behaviors.

Let D denote the domain of interest. Let SP be the set
of pure strategies that the domain makes available to both
players. We may think of SP as a set of “basis behaviors.” In
addition to the pure strategies, the domain makes available
to the players an uncountable infinity of mixed strategies;
these are stochastic behaviors based upon probability dis-
tributions over the pure strategies. Let SM be the set of

500

mixed strategies. Note that pure strategies are degenerate
mixtures, where the entire probability mass is on a single
pure strategy.

When the two players interact, each player receives a pay-
off that generally depends upon both the player’s own strat-
egy and the strategy used by the other player. Let G be a
look-up function (which we term a game) such that, when
Players 1 and 2 use strategies sα and sβ (where sα, sβ ∈ SM

and sα may equal sβ), respectively, the expected payoffs
to Players 1 and 2 are G(sα, sβ) and G(sβ, sα), respectively.
(The expected payoffs of mixed strategies are weighted sums
of pure-strategy payoffs, where the weights correspond to the
probability distributions of the mixtures.)

3.2 Evolutionary Substrate
Our search of the domain D is mediated by an evolu-

tionary substrate and associated variation operators. In EA
parlance, the substrate is a genome, and any instantiation of
the genome is a genotype; the interpretation of a genotype
results in a phenotype, which in-turn yields some behavior
that we observe and measure. Examples of evolutionary
substrates include grammars, neural networks, genetic pro-
grams, and bit-strings.

Let P be the universe of phenotypic behaviors enabled by
a substrate (via its interpretation). P may overlap in any
number of ways with the universe of behaviors specified by
the domain D (i.e., SM). We can imagine five general cases.
First, the two sets P and D may be identical; thus, every be-
havior possible in the domain is generated by the substrate
and no behavior generated by the substrate is external to the
domain. Second, the set P may be a proper subset of D. In
this case, all behaviors generated by the substrate belong to
the domain, but not all domain behaviors are covered. For
example, the genome may allow P to contain only the pure
strategies (or some other subset of the mixed strategies). In
particular, the domain behaviors we care about most—those
that constitute solutions—may be excluded. Third, the set
P may be a proper superset of D; in this case, all the be-
haviors of the domain are covered, but the substrate also
generates behaviors that fall outside of the domain. (An
example of this situation can be found in [2] where genetic
programs are evolved to play Tic-Tac-Toe; in addition to
generating all the possible (deterministic) strategies for the
domain, their substrate also generates behaviors that make
illegal moves. Such behaviors are not disallowed, but rather
cause the player making an illegal move to forfeit a turn.
The accommodation of these “illegal” behaviors represents,
essentially, an extension of the domain—a new rule to the
game.) Fourth, neither set may contain the other, but a
non-empty intersection may exist; this case combines the
features of Cases 2 and 3. Fifth, the two sets may have an
empty intersection.

Regardless of the relationship between P and D, we must
recognize that we are not directly searching the domain of
interest, but instead traversing the space of behaviors made
available by P . Thus, P is the de facto domain.

3.3 Games and Sub-Games
Let GU denote the function (or game) defined over the

universe of behaviors enabled by P such that GU (si, sj) and
GU (sj , si) are the expected payoffs to Players 1 and 2 using
strategies si and sj , respectively. A game Gα is a sub-game
of another game Gβ, denoted Gα ⊆ Gβ , if and only if the

set of phenotypes Pα over which Gα is defined is a subset of
the set of phenotypes Pβ over which Gβ is defined. One par-
ticular sub-game of GU that we are interested to consider
is GW , which we define to reflect our state of knowledge,
that is, the set of phenotypes that our coevolutionary algo-
rithm has discovered. We discuss GW further below. For
convenience, we will use a game Gx and its corresponding
phenotype set Px interchangeably, often treating Gx as a
set of phenotypes. We also use capital letters (e.g., A, B) to
denote games.

3.4 Behavior Complexes
As we note above, the space of phenotypes made available

by the genomic representation may exclude certain behav-
iors that belong to the domain of interest. In particular,
P may exclude some or all mixed strategies, yet a missing
mixed strategy may be a solution to our game. To accom-
modate this possibility, we introduce the behavior complex
C. A behavior complex is a collection of phenotypic behav-
iors that are combined (via a probability distribution, such
that members of the complex are played with non-zero prob-
ability) to correspond to some mixed strategy sm ∈ SM .

Thus, our search effort ultimately concentrates on the
space of complexes. Further, our solution concept does not
operate directly upon the problem domain of interest (D),
but rather upon the the de facto domain, which is observed
and measured via these behavior complexes. A solution is
always expressed as a behavior complex (even if the complex
contains only a single phenotype).

3.5 Solution Concepts and Solutions
A solution concept (or, optimality concept) O is defined

either extensionally or intensionally. A solution concept
can simply partition the space of behavior complexes into
solutions and non-solutions without stating any underlying
properties by virtue of which a behavior complex is con-
sidered a solution; a solution concept so defined is exten-
sional. Alternatively (and usually the case in real-world al-
gorithms), a solution concept will state a number of proper-
ties that a behavior complex must possess to be a solution;
such a solution concept is intensional.

The assessment of a behavior complex C, to determine
whether or not it is a solution, is always performed with re-
spect to some given sub-game Gα ⊆ GU and corresponding
set of phenotypes Pα ⊆ P , where C ⊆ Pα. Let C∗ denote
a behavior complex that is a solution to sub-game Gα ac-
cording to solution concept O; let C∗(Gα,O) be the set of
all solutions to Gα according to O.

3.6 State of Knowledge
The phenotypes that 1) have been discovered by a search

heuristic and 2) are still in the computer’s memory, such
that they can be utilized by the heuristic, are defined as the
heuristic’s state of knowledge. We denote the state of knowl-
edge at time t as Wt, where Wt ⊆ P . At any time-step t
that we query the search heuristic, the behavior complex C
returned by the heuristic should be a solution to the game
GW (defined over Wt) according to solution concept O, i.e.,
C ∈ C∗(GW ,O). Otherwise, the heuristic does not imple-
ment O. Note that all strategies included in C must also
be in Wt—we cannot use strategies of which we lack knowl-
edge. When GW = GU , we expect the search heuristic to
return a behavior complex that is a global solution.

501

In the analyses we perform in Section 5, we assume a
coevolutionary algorithm where Wt ⊆ Wt+1 for all t. That
is, the algorithm’s knowledge of the search space increases
monotonically over time. We are interested to know if the
quality of the solution reported by the algorithm increases
monotonically over time, as well. For convenience, we often
use W and GW interchangeably.

3.7 From Domain to Solution
Let us review our formalism. The problem domain D spec-

ifies a universe of behaviors that we are interested to explore.
Nevertheless, we are unable to traverse D directly. Geno-
types are the objects to which selection pressure and varia-
tional operators are applied; on a mechanistic level, we per-
form search in the space of genotypes. The substrate (along
with an interpretive process) provides a way to express be-
haviors (the phenotypes P) and thereby realize our explo-
ration of the domain; the phenotypes provide the behaviors
we can actually observe. Individual phenotypes might not
constitute solutions according to our solution concept O,
thus we use behavior complexes to express the space of be-
haviors that we actually explore on the conceptual level.

4. PREFERENCE RELATION
Here we define and examine a preference relation over the

space of behavior-complexes. The relation forms the basis
of our reasoning about monotonic solution concepts.

4.1 Definition
Given some game GU and solution concept O, we can

define the following preference relation (or predicate). We
prefer one complex Cα over another complex Cβ, denoted

Cα

O� Cβ , if and only if every game for which Cβ is a solution
is a proper sub-game of some game for which Cα is a solution;
that is, we prefer Cα because it generalizes Cβ (by applying
to super-games). When the preference relation does not hold
between a pair of complexes Cα and Cβ, denoted Cα ≈ Cβ ,
then we neither prefer Cα to Cβ nor vice versa.

The preference relation implies that we prefer any solu-
tion C∗ to GU over any non-solution C; further, given two or
more solutions to GU , the relation implies that we have no
preference for one solution over another. (If we have an in-
formal preference for one solution over another, then we can
formalize our preference by refining the solution concept, as
discussed in [9].)

Definition 1 (Preference Relation). Let Gα be the
set of games for which Cα is a solution; let Gβ be the set of
games for which Cβ is a solution. Cα � Cβ iff ∀Gβ ∈ Gβ :
∃Gα ∈ Gα : Gβ ⊂ Gα ⊆ GU .

4.2 Reflexivity, Symmetry, and Transitivity
The preference relation is not reflexive—we will never pre-

fer a configuration to itself: Cα ≈ Cα. Non-reflexivity follows
from the definition of the preference relation; given the set
Gα of games for which Cα is a solution, there must exist at
least one game G ∈ Gα that does not have a superset in Gα.

The preference relation is not symmetric—if we prefer
one configuration to another, then the converse is not true:
Cα � Cβ =⇒ Cβ � Cα. Non-symmetry also follows from the
definition of the preference relation. Let Gα be the set of
games for which configuration Cα is a solution and Gβ be
the set of games for which Cβ is a solution. Since we prefer

Cα to Cβ, each game in Gβ is a sub-game of some game in Gα.
If we simultaneously prefer Cβ to Cα, then each game in Gα

must also be a sub-game of some game in Gβ; but, for this to
be true, the subset relation must allow for an intransitivity,
which it does not.

While the preference relation is neither reflexive nor sym-
metric, it is transitive—if we prefer configuration Cα to Cβ,
and prefer Cβ to Cγ , then we prefer Cα to Cγ . The tran-
sitivity of the preference relation follows directly from the
transitivity of the subset relation, as Figure 1 illustrates.
Since each game in Gγ is a subset of some game in Gβ, and
each game in Gβ is a subset of some game in Gα, then each
game in Gγ must also be a subset of some game in Gα.

Thus, the preference relation yields a partial ordering over
the space of behavior complexes.

⊃
⊃

Subgames for which
Cα is a solution

Subgames for which
Cβ is a solution

Subgames for which
Cγ is a solution

Gα Gβ Gγ

Figure 1: Transitivity of preference relation follows
from transitivity of subset relation. Directed edge
indicates superset relation between two games.

4.3 Monotonicity
Let Gx be the set of games for which complex Cx is a

solution and Gy the set of games for which complex Cy is a
solution. The preference relation says that we prefer Cx to
Cy if and only if every game in Gy is a sub-game of some
game in Gx. Of course, not every game in Gx must be a
super-game; in particular, the preference relation allows for
the existence of a game in Gx that is a sub-game of a game
in Gy, as shown in Figure 2. Here, we prefer Cx to Cy, yet
game E ∈ Gx is a sub-game of game D ∈ Gy.

When a complex C is a solution for games Gα and
Gγ , where Gα ⊃ Gγ , but not for some game Gβ , where
Gα ⊃ Gβ ⊃ Gγ , then we call the solution concept O
non-monotonic. We define a monotonic solution concept
to be one such that every complex C that is a solution to
games Gα and Gγ , where Gα ⊃ Gγ , will also be a solution
to any game Gβ , where Gα ⊃ Gβ ⊃ Gγ . The solution con-
cept in Figure 2 is therefore non-monotonic: Cx is a solution
for games C and E, but not of D, and C ⊃ D ⊃ E. The
relationship between game-sets Gx and Gy allows a search
algorithm to exhibit non-monotonic behavior.

4.4 Dynamics of Non-Monotonic Concepts
For any solution concept O, the preference relation pro-

vides a global partial ordering over the space of behavior
complexes. Nevertheless, if O is non-monotonic, then the
process of search—even when it does not discard any infor-
mation discovered during its operation—may be unable to
conform to the preference relation and will contradict it. For
example, let us return to Figure 2. If the game E ∈ Gx is our
state of knowledge at time t (i.e., Wt = E), then the solution

502

A B
C

DE

⊃

⊂

⊃

Gx Gy

Subgames for which
Cx is a solution

Subgames for which
Cy is a solution

Figure 2: Non-monotonic solution concept.

returned by the search heuristic when queried is the com-
plex Cx. Let us say that at time t+1, the heuristic discovers
new strategies and our state of knowledge is expanded to
include these additional strategies such that our new state
of knowledge is game D. Since D
∈ Gx and D ∈ Gy, our
solution is now complex Cy. By discarding Cx in favor of
Cy, the algorithm contradicts the preference relation (which
says that we prefer Cx to Cy). If the state of knowledge is
expanded further to become game C, then the search algo-
rithm contradicts itself, in a sense, by re-adopting a solution
it had previously discarded.

4.5 Dynamics of Monotonic Concepts
The definition of a monotonic solution concept guarantees

that coevolutionary search, when it does not discard infor-
mation, will always conform to the preference relation. To
show that this must be the case, let us imagine two states
of knowledge, Wt and Wt+k, where Wt ⊂ Wt+k and k ≥ 1.
Further, let us say that the solution reported for Wt is com-
plex Cx and for Wt+k is Cy. Now, if the solution concept
is monotonic, then we cannot prefer (by Definition 1) Cx

to Cy. If we prefer Cx to Cy, then there must exist some
game G that is a superset of Wt+k for which Cx is a solu-
tion. But, if Cx is a solution of both games Wt and G, and
Wt ⊂ Wt+k ⊂ G, then either Cx must also be a solution to
Wt+k (in which case we do not discard Cx and transition to
Cy), or the solution concept is not monotonic.

We can construct a directed graph of the preference rela-
tion where each vertex is a behavior complex, and for each
pair of complexes Cx and Cy, where we prefer Cx to Cy, there
is a directed edge from Cx to Cy. If search does not discard
information, then the property of monotonicity means that
once we visit a vertex on the graph, we will never follow an
edge leading back to that vertex or to any of its descendants
in the graph. Thus, a monotonic solution concept means
that the quality of the result returned by a search heuris-
tic (assuming that it does not discard information) will also
increase monotonically over time; this is not guaranteed to
be true for a non-monotonic solution concept, even when
information is never discarded.

5. SOLUTION CONCEPTS
Having discussed the properties of monotonic and non-

monotonic solution concepts in general, we now investigate
some specific solution concepts. We show that the solu-
tion concept commonly implemented in coevolutionary al-
gorithms is not monotonic, whereas the game-theoretic con-
cept of Nash equilibrium is.

5.1 Best-Scoring Strategy

5.1.1 Description
In the conventional single-population coevolutionary al-

gorithm, we constrain the solution to be embodied by a
single individual; thus, the space of behavior complexes is
restricted to (i.e., the same as) the space of phenotypes. We
define the solution to be (the strategy implemented by the
phenotype of) the individual in the final population with
the highest fitness; when queried during its operation, the
algorithm returns the fittest individual of the current pop-
ulation. An individual’s fitness is derived from the sum of
payoffs obtained by complete mixing (interaction with all
other members of the population). Thus, fitness is sensitive
not only to which strategies are represented in the popula-
tion, but also the proportions with which each strategy is
represented; fitness is frequency-dependent. Let us call this
solution concept “best-in-the-ecology” (BITE).

To simplify our analysis we consider a special case of the
BITE solution concept that is frequency-independent; we
will call our alternative solution concept best-scoring strat-
egy (BSS). Given the set S of unique strategies, the BSS
solution concept returns the strategy ŝ in S that obtains
the highest average score from interaction with each mem-
ber of S . The essential difference between BSS and BITE
is that BSS assumes S not to contain duplicates; thus, the
choice of ŝ does not depend upon the frequency with which
different strategies might appear in the population.

5.1.2 Non-Monotonicity of BSS
Here we show that BSS is a non-monotonic solution con-

cept. Our proof is by contradiction, so let us assume that
BSS is monotonic. If BSS is monotonic, then by defini-
tion a complex Cx that is a solution to games A and C,
where A ⊃ C, must also be a solution to any game B, where
A ⊃ B ⊃ C. Let us consider a simple symmetric zero-sum
game GU . We can imagine the following sub-games of GU :

C = W ∪ {x, y} (1)

B = C ∪ V (2)

GU = A = B ∪ U (3)

where x and y are individual strategies, and U , V , W are
sets (we treat A, B, C as games and sets). Equation 4 il-
lustrates the resulting payoff matrix (bold numbers indicate
sub-matrices of identical payoffs, e.g., 1 is all ones; ‘∗’ indi-
cates that any sub-matrix can be used).

GU =

x y W V U
x 0 0 1 −1 1
y 0 0 −1 1 −1

W −1 1 ∗ 0 0
V 1 −1 0 ∗ 0
U −1 1 0 0 ∗

(4)

Let us say that x and y tie each other; further, x beats
everyone in W and U , but loses to everyone in V , whereas
y beats everyone in V , but loses to everyone in W and U .
Also, let us say that members of W tie against members of
V and U , and members of V tie against members of U (and
W). The row-sum of scores for strategy x in game C is equal
to |W | (one win for each strategy in W). Similarly, the row-
sum of scores for strategy y is −|W |. The row-sum of scores

503

in game C for any strategy in W must be less than the row-
sum for strategy x: no strategy in W can accumulate more
than |W |−1 wins (against members of W), since a strategy
must tie itself. Thus, x is the solution to game C, and for
x to be the solution to game A we need merely make |U | +
|W | > |V |. Now, if BSS is a monotonic solution concept,
then from the preceding it should immediately follow that
x is also a solution to game B. But, if the cardinality of V
is greater than that of W , then x cannot be the solution to
game B; instead, we find that y is the solution. Thus, our
assumption that BSS is monotonic is contradicted. �

The BSS solution concept is free of frequency-dependent
effects, yet is still non-monotonic; thus, we can easily see
that BITE—which is frequency-dependent—is also non-
monotonic. The non-monotonicity of BSS and BITE is cer-
tainly consistent with the Red-Queen Effect [30] and with
the common sentiment that objective metrics of goodness
are difficult or impossible to obtain for coevolutionary sys-
tems (see, for example, [13]).

In an effort to grapple with this difficulty, research in [21]
approaches the issue from the point of view of the game, dis-
cussing what properties a game should have to easily admit
an objective measure of goodness; these properties restrict
the game to a very narrow class that lacks the structures
that give games of strategy much of their interest. In con-
trast, the work we present here shifts the focus of attention
away from the game and onto the solution concept. Our
preference relation (which provides a global partial order
over the space of complexes) reveals that the difficulty in
achieving monotonic performance can be due, in no small
part, to the solution concept we choose.

5.2 Nash Equilibrium

5.2.1 Description
A Nash-equilibrium strategy in a symmetric game is a

strategy that is its own best reply. Thus, given that both
players have available to them the same set of strategies,
if one player uses the Nash-strategy s∗, then the highest
expected payoff obtainable by the other player is received
when the other player also uses s∗. Stated more formally, s∗

is a Nash-equilibrium strategy with respect to a strategy-set
S if and only if ∀s ∈ S : GS(s, s∗) ≤ GS(s∗, s∗).

A Nash equilibrium strategy may be either pure or mixed.
For example, the Nash strategy for Rock-Paper-Scissors is
a mixture where all three strategies are played with equal
probability. Thus, the Nash equilibrium solution concept
requires that behavior complexes allow collections of pheno-
types (in contrast to BITE and BSS).

5.2.2 Monotonicity of Nash Equilibrium
Nash equilibrium is a monotonic solution concept in sym-

metric games. Our proof is by contradiction, so let us as-
sume that the Nash-equilibrium concept is not monotonic.
Figure 2 shows an example non-monotonic solution concept
by which we prefer complex Cx to complex Cy. From the
definition of Nash equilibrium, we know that the strategy
represented by Cx is its own best-reply in all of the games
in Gx. Since Cx is a solution for game E, we know that the
strategies in Cx are found in E, as well as any superset of E.
In particular, game D contains the strategies in Cx. Figure
2 claims that Cx is not a solution to game D. Yet, because
there exists no strategy in C that is a better reply to Cx,

there exists no better reply to Cx in any subset of C; par-
ticularly, a better reply to Cx cannot exist in D. Therefore,
Cx must be a solution to game D, as well, in contradiction
to the figure. Thus, Nash equilibrium must be a monotonic
solution concept. �

Equation 5 shows a five-strategy, symmetric zero-sum
game. Figure 3 shows the graph of the preference relation
generated by this game using Nash equilibrium as the solu-
tion concept. Each “vertex” contains a behavior complex in
bold and below it a list of games (or states of knowledge)
for which the complex is a solution (each game is specified
by the list of strategies in the game; each row is a sepa-
rate game). A directed edge that connects two vertices in-
dicates the preference relation. For example, we prefer the
complex composed of strategies {bde} to the complex {ce}—
each game for which {ce} is a solution is a sub-game of some
game for which {bde} is a solution. Since the preference re-
lation is transitive, we also prefer {bde} to {e}, for example.
The reader can verify that no sequence of increasing states
of knowledge will cause movement in the graph to go against
the preference relation. The preference relation does allow
movement between vertices that are not connected by an
edge, but once a vertex is visited, neither it nor any of its
descendents on the graph will be visited again (or at all).

GU =

a b c d e
a 0 0 1 0 −1
b 0 0 −1 −1 1
c −1 1 0 −1 0
d 0 1 1 0 −1
e 1 −1 0 1 0

(5)

{ 1/3 1/3 1/3 }

a b c d e
a b d e
b c d e
b d e

{ b d e }

{ 1/2 1/2 } { 1/2 1/2 }{ c e } { a b } { a }

a c d e
a c e
b d e
c d e

a b c
a b c e
a b e

a
a b
a b c d
a b d
a c
a c d
a d

{ e } { c } { b } { d }

a d e
a e
c e
d e
e

b c
c
c e

a b
b
b e

b c d
b d
c d
d

Figure 3: Preference diagram for game in Equation
5 using Nash equilibrium. Probability distributions
for mixed-strategy C are indicated next to vertices.

6. DISCUSSION
The preference relation we define in Section 4 can be in-

stantiated by any solution concept; limited space permits
analysis of only two instantiations in this paper. Another

504

solution concept that is used in coevolutionary algorithms is
Pareto optimality ; we show in [9] that this concept is mono-
tonic provided it is implemented in a specific way.

Throughout our analyses we assumed that strategies dis-
covered by search are never thrown away. But, real-world
algorithms have finite resources. Are our results relevant
in this case? While infinite-memory assumptions simplify
analysis, our earlier results on the Nash memory mechanism
[10] show that monotonic improvement can be nicely ap-
proximated by a finite-memory system. Thus, initial data
suggest that the benefits of monotonic concepts are robust.

The general notion of monotonic-improvement-over-time
can, of course, be construed in different ways. An alterna-
tive view of monotonicity is given in studies of asymmet-
ric zero-sum games between learners and tests [5, 6]. This
work shows that a distance function to a global solution is
monotonically decreased when a learner is discovered that
solves a previously unsolved test (or combination of tests);
that is, the minimal number of tests (or test combinations)
that we know to be solvable increases monotonically. This
alternative notion of monotonicity is subsumed by the one
we present in this paper. Further, the guarantees offered
by our notion of monotonicity extend beyond the known
search-space into the unknown, as we discuss below.

7. OPEN-ENDED DOMAINS
Much research in coevolution concerns how a coevolution-

ary dynamic may generate an open-ended system, where
novel and increasingly complex behaviors are continually in-
novated. Examples of such research include the evolution of
language [15], the IPD [20, 16], competitive games in virtual
worlds [28], artificial chemistries [12], and complex A-Life
ecologies [25, 19, 29]. Nevertheless, a precise articulation of
open-endedness is made difficult by, among other things, the
lack of a universally agreed-upon notion of complexity [1, 3,
17]. From the point of view of the framework developed in
this paper, we can contribute the following thoughts.

The game, as we formally define it here, is merely a func-
tion that maps pairs of strategies to payoffs; in particular,
a game represents nothing about the behavior of a strategy,
other than the payoffs it earns—a highly abstracted view of
behavior, indeed. Thus, with respect to the theme of open-
endedness, we can infer only certain things from a game. For
example, if the game GU is finite, then clearly the domain
(or, more accurately, that part of the domain exposed by the
evolving substrate) cannot be open-ended—there are only a
finite number of (pure) strategies defined. Tic-Tac-Toe is
an example of a closed-ended domain. Other domains, such
as numbers games [31], are open-ended at least in the sense
that they allow an infinity of strategies; for any finite set of
numbers-game strategies, we can always find another strat-
egy that will beat all of them, yet this winning strategy will
appear no more complex than the others which it beats.

A more compelling form of open-endedness entails the
generation of novel and unexpected solutions to the strategic
challenges posed by coevolving individuals—open-endedness
is a sequence of set-breaking tasks. Innovative solutions not
only have intrinsic interest, but also reveal the domain to
which they belong to have more nuance than previously
imagined. We can thus make a simple taxonomy of domains:
Closed-ended domains have a finite space of pure-strategy
behaviors; impoverished open-ended domains have an infin-
ity of behaviors, but these behaviors can be systematized

in finite space—i.e., the “rules of the game” are finite; rich
open-ended domains not only have an infinity of behaviors,
but also the systematization of the domain requires infinite
space. These categories of open-endedness echo ideas de-
scribed in [29].

The idea of rich open-endedness appears to leave little
room for objective metrics of goodness, since every new in-
novation changes the prism through which we view and un-
derstand the domain. For example, each innovation may un-
cover another intransitive structure in the domain; a strat-
egy previously understood as “poor” may regain respectabil-
ity because we realize that an entire aspect of its behavior
was overlooked. But, we should not conflate behavioral com-
plexity with adaptive utility. Whatever our perception of
a strategy’s behavior, the game of our formalism does not
distinguish between impoverished and rich open-endedness,
nor for that matter between closed-endedness and open-
endedness.

Since our formalizations of solution concepts and mono-
tonicity are built on the game, and not any deep repre-
sentation of the domain’s behaviors, our results concerning
monotonicity apply equally to all domains, closed-ended and
open-ended, impoverished and rich. If we do not discard in-
formation, then the solutions we obtain at time t are guar-
anteed to be no worse, in an objective (i.e., global) sense,
than solutions obtained earlier; and, this is true regardless of
the fact that we have only local knowledge of the domain and
no knowledge of what strategies we might discover in the fu-
ture. If our solution concept is non-monotonic, then no such
guarantee can be made, even for closed-ended domains.

8. CONCLUSION
In this paper, we consider the question of whether a co-

evolutionary algorithm, when applied to solve a game of
strategy, can monotonically improve the solution it reports
as it operates over time, assuming that the algorithm is able
to incrementally accumulate knowledge of the search space.
Our intuitions do not provide a clear answer to this question.
The monotonic increase of knowledge we assume suggests an
affirmative answer, yet our familiarity with problems caused
by intransitive superiority structures (such as that in Rock-
Paper-Scissors) suggests a negative answer.

Our approach to this question is to first develop a prefer-
ence relation over the search space. This preference relation
creates a global partial-ordering. To answer the above ques-
tion in the affirmative, we require that the solution concept
implemented by the coevolutionary search algorithm never
cause the algorithm’s estimations to appear in a sequence
that contradicts the partial order. A solution concept that
guarantees such operation is monotonic.

We show that the solution concept conventionally imple-
mented in a coevolutionary algorithm is not monotonic; that
is, it does not allow us to expect monotonically improving
estimations to be produced by the algorithm, even with our
assumption that knowledge is never discarded. In contrast,
we also show that the solution concept of Nash equilibrium is
monotonic; if the algorithm implements Nash equilibrium,
then it does guarantee monotonic improvement. Interest-
ingly, this guarantee holds even though we assume nothing
about the space of game strategies that remains to be dis-
covered. Consequently, our results apply immediately to
open-ended domains. Our formalism can be applied easily
to other solution concepts, such as Pareto optimality [9].

505

Of course, our assumption that knowledge is never dis-
carded is difficult to meet in the real-world. Nevertheless,
our earlier work [10] demonstrates that a finite-memory sys-
tem that heuristically discards knowledge can closely ap-
proximate monotonic improvement over time, if the solution
concept allows.

9. ACKNOWLEDGMENTS
The author thanks Anthony Bucci, Edwin de Jong, Jor-

dan Pollack, Shivakumar Viswanathan and members of the
DEMO Lab.

10. REFERENCES
[1] C. Adami. What is complexity? BioEssays,

24(12):1085–1094, 2002.

[2] P. J. Angeline and J. B. Pollack. Competitive
environments evolve better solutions for complex
tasks. In S. Forrest, editor, Proceedings of the Fifth
International Conference on Genetic Algorithms,
pages 264–270. Morgan Kaufmann, 1993.

[3] J. P. Crutchfield. The calculi of emergence:
Computation, dynamics and induction. Physica D,
75(1–3):11–54, 1994.

[4] P. Darwen and X. Yao. Automatic modularization by
speciation. In T. Fukuda et al., editors, Proc. of the
1996 IEEE International Conference on Evolutionary
Computation, pages 88–93. IEEE Press, 1996.

[5] E. D. de Jong. The incremental pareto-coevolution
archive. In K. Deb et al., editors, Proc. 2004 Genetic
and Evolutionary Computation Conference, LNCS
3102, pages 525–536. Springer, 2004.

[6] E. D. de Jong. The maxsolve algorithm for
coevolution. In U.-M. O’Reilly, editor, Proc. 2005
Genetic and Evolutionary Computation Conference.
ACM, 2005.

[7] K. A. De Jong. Are genetic algorithms function
optimizers? In R. Männer and B. Manderick, editors,
Parallel Problem Solving from Nature II, pages 3–13.
Elsevier, 1992.

[8] K. A. De Jong. Genetic algorithms are NOT function
optimizers. In L. D. Whitely, editor, Foundations of
Genetic Algorithms 2 (FOGA), pages 5–18. Morgan
Kaufmann, 1993.

[9] S. G. Ficici. Solution Concepts in Coevolutionary
Algorithms. PhD thesis, Brandeis University, 2004.

[10] S. G. Ficici and J. B. Pollack. A game-theoretic
memory mechanism for coevolution. In Cantú-Paz
et al., editors, 2003 Genetic and Evolutionary
Computation Conference, pages 286–297. Springer,
2003.

[11] C. M. Fonseca and P. J. Fleming. An overview of
evolutionary algorithms in multiobjective
optimization. Evolutionary Computation, 3(1):1–16,
1995.

[12] W. Fontana. Algorithmic chemistry. In Langton et al.
[18], pages 159–209.

[13] H. Freund and R. Wolter. Evolution of bit strings:
Some preliminary results. Complex Systems,
5:279–298, 1991.

[14] I. Harvey. Cognition is not computation: Evolution is
not optimisation. In W. Gerstner et al., editors, Proc.
of the 7th Int. Conf. on Artificial Neural Networks,
pages 685–690. Springer-Verlag, 1997.

[15] T. Hashimoto and T. Ikegami. Emergence of
net-grammar in communicating agents. BioSystems,
38(1):1–14, 1996.

[16] T. Ikegami. From genetic evolution to emergence of
game strategies. Physica D, 75(1–3):310–327, 1994.

[17] J. F. Kolen and J. B. Pollack. The observer’s paradox:
Apparent computational complexity in physical
systems. Journal of Experimental and Theoretical
Artificial Intelligence, 7:253–277, 1995.

[18] C. Langton et al., editors. Artificial Life II.
Addison-Wesley, 1992.

[19] R. E. Lenski, C. Ofria, T. C. Collier, and C. Adami.
Genome complexity, robustness and genetic
interactions in digital organisms. Nature, 400:661–664,
August 1999.

[20] K. Lindgren. Evolutionary phenomena in simple
dynamics. In Langton et al. [18], pages 295–312.

[21] S. Luke and R. P. Wiegand. When coevolutionary
algorithms exhibit evolutionary dynamics. In A. Barry,
editor, 2002 Genetic and Evolutionary Computation
Conference Workshop Program, pages 236–241, 2002.

[22] J. Maynard-Smith. Evolution and the Theory of
Games. Cambridge University Press, 1982.

[23] S. Nolfi and D. Floreano. Co-evolving predator and
prey robots: Do ‘arm races’ arise in artificial
evolution? Artificial Life, 4(4):311–335, 1998.

[24] M. Potter and K. De Jong. Cooperative coevolution:
An architecture for evolving coadapted
subcomponents. Evolutionary Computation, 8(1):1–29,
2000.

[25] T. S. Ray. Evolution, complexity, entropy and
artificial reality. Physica D, 75(1–3):239–263, 1994.

[26] C. D. Rosin and R. Belew. A competitive approach to
game learning. In A. Blum and M. Kearns, editors,
Proc. of the Ninth Annual ACM Conf. on
Computational Learning Theory, pages 292–302. ACM
Press, 1996.

[27] L. M. Schmitt. Theory of coevolutionary genetic
algorithms. In M. Guo and L. T. Yang, editors, Int.
Symp. on Parallel and Distributed Processing and
Applications, volume 2745 of LNCS, pages 285–293.
Springer, 2003.

[28] K. Sims. Evolving 3d morphology and behavior by
competition. In R. A. Brooks and P. Maes, editors,
Artificial Life IV, pages 28–39. MIT Press, 1994.

[29] T. Taylor. Creativity in evolution: Individuals,
interactions and environments. In P. J. Bentley and
D. W. Corne, editors, Creative Evolutionary Systems,
pages 79–108. Morgan Kaufmann, 2001.

[30] L. van Valen. A new evolutionary law. Evolutionary
Theory, 1:1–30, 1973.

[31] R. A. Watson and J. B. Pollack. Coevolutionary
dynamics in a minimal substrate. In L. Spector et al.,
editors, Proc. of the 2001 Genetic and Evolutionary
Computation Conference, pages 702–709, 2001.

506

